Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Article En | MEDLINE | ID: mdl-38411286

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Epilepsy, Temporal Lobe , Epileptic Syndromes , Adult , Humans , Epilepsy, Temporal Lobe/complications , Phenytoin , Cross-Sectional Studies , Epileptic Syndromes/complications , Cerebellum/diagnostic imaging , Cerebellum/pathology , Seizures/complications , Magnetic Resonance Imaging/methods , Atrophy/pathology
2.
Brain Sci ; 13(12)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38137114

After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed "long COVID". Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are poorly understood. The present study recruited a group of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy (1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT) group matched in demographics, intelligence, and an array of other variables. Controlling for tissue composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction.

3.
bioRxiv ; 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37961570

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

4.
Neuroimage Clin ; 39: 103473, 2023.
Article En | MEDLINE | ID: mdl-37531834

OBJECTIVE: Temporal Lobe Epilepsy (TLE) is frequently a neurodevelopmental disorder, involving subcortical volume loss, cortical atrophy, and white matter (WM) disruption. However, few studies have addressed how these pathological changes in TLE relate to one another. In this study, we investigate spatial patterns of gray and white matter degeneration in TLE and evaluate the hypothesis that the relationship among these patterns varies as a function of the age at which seizures begin. METHODS: Eighty-two patients with TLE and 59 healthy controls were enrolled. T1-weighted images were used to obtain hippocampal volumes and cortical thickness estimates. Diffusion-weighted imaging was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) of the superficial WM (SWM) and deep WM tracts. Analysis of covariance was used to examine patterns of WM and gray matter alterations in TLE relative to controls, controlling for age and sex. Sliding window correlations were then performed to examine the relationships between SWM degeneration, cortical thinning, and hippocampal atrophy across ages of seizure onset. RESULTS: Cortical thinning in TLE followed a widespread, bilateral pattern that was pronounced in posterior centroparietal regions, whereas SWM and deep WM loss occurred mostly in ipsilateral, temporolimbic regions compared to controls. Window correlations revealed a relationship between hippocampal volume loss and whole brain SWM disruption in patients who developed epilepsy during childhood. On the other hand, in patients with adult-onset TLE, co-occurring cortical and SWM alterations were observed in the medial temporal lobe ipsilateral to the seizure focus. SIGNIFICANCE: Our results suggest that although cortical, hippocampal and WM alterations appear spatially discordant at the group level, the relationship among these features depends on the age at which seizures begin. Whereas neurodevelopmental aspects of TLE may result in co-occurring WM and hippocampal degeneration near the epileptogenic zone, the onset of seizures in adulthood may set off a cascade of SWM microstructural loss and cortical atrophy of a neurodegenerative nature.


Epilepsy, Temporal Lobe , White Matter , Adult , Humans , White Matter/pathology , Cerebral Cortical Thinning/pathology , Magnetic Resonance Imaging , Diffusion Tensor Imaging , Seizures/pathology , Gray Matter/pathology , Atrophy/pathology
5.
J Neurosurg ; 139(6): 1576-1587, 2023 12 01.
Article En | MEDLINE | ID: mdl-37178024

OBJECTIVE: Risk for memory decline is a common concern for individuals with temporal lobe epilepsy (TLE) undergoing surgery. Global and local network abnormalities are well documented in TLE. However, it is less known whether network abnormalities predict postsurgical memory decline. The authors examined the role of preoperative global and local white matter network organization and risk of postoperative memory decline in TLE. METHODS: One hundred one individuals with TLE (n = 51 with left TLE and 50 with right TLE) underwent preoperative T1-weighted MRI, diffusion MRI, and neuropsychological memory testing in a prospective longitudinal study. Fifty-six age- and sex-matched controls completed the same protocol. Forty-four patients (22 with left TLE and 22 with right TLE) subsequently underwent temporal lobe surgery and postoperative memory testing. Preoperative structural connectomes were generated via diffusion tractography and analyzed using measures of global and local (i.e., medial temporal lobe [MTL]) network organization. Global metrics measured network integration and specialization. The local metric was calculated as an asymmetry of the mean local efficiency between the ipsilateral and contralateral MTLs (i.e., MTL network asymmetry). RESULTS: Higher preoperative global network integration and specialization were associated with higher preoperative verbal memory function in patients with left TLE. Higher preoperative global network integration and specialization, as well as greater leftward MTL network asymmetry, predicted greater postoperative verbal memory decline for patients with left TLE. No significant effects were observed in right TLE. Accounting for preoperative memory score and hippocampal volume asymmetry, MTL network asymmetry uniquely explained 25%-33% of the variance in verbal memory decline for left TLE and outperformed hippocampal volume asymmetry and global network metrics. MTL network asymmetry alone produced good diagnostic classification of memory decline in left TLE (i.e., an area under the receiver operating characteristic curve of 0.80-0.84 and correct classification of 65%-76% of cases with cross-validation). CONCLUSIONS: These preliminary data suggest that global white matter network disruption contributes to verbal memory impairment preoperatively and predicts postsurgical verbal memory outcomes in left TLE. However, a leftward asymmetry of MTL white matter network organization may confer the highest risk for verbal memory decline. Although this requires replication in a larger sample, the authors demonstrate the importance of characterizing preoperative local white matter network properties within the to-be-operated hemisphere and the reserve capacity of the contralateral MTL network, which may eventually be useful in presurgical planning.


Epilepsy, Temporal Lobe , White Matter , Humans , White Matter/diagnostic imaging , Longitudinal Studies , Prospective Studies , Magnetic Resonance Imaging/methods , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Memory Disorders/diagnostic imaging , Memory Disorders/etiology
6.
Neurology ; 100(18): e1887-e1899, 2023 05 02.
Article En | MEDLINE | ID: mdl-36854619

BACKGROUND AND OBJECTIVES: There is growing evidence that bilingualism can induce neuroplasticity and modulate neural efficiency, resulting in greater resistance to neurologic disease. However, whether bilingualism is beneficial to neural health in the presence of epilepsy is unknown. We tested whether bilingual individuals with temporal lobe epilepsy (TLE) have improved whole-brain structural white matter network organization. METHODS: Healthy controls and individuals with TLE recruited from 2 specialized epilepsy centers completed diffusion-weighted MRI and neuropsychological testing as part of an observational cohort study. Whole-brain connectomes were generated via diffusion tractography and analyzed using graph theory. Global analyses compared network integration (path length) and specialization (transitivity) in TLE vs controls and in a 2 (left vs right TLE) × 2 (bilingual vs monolingual) model. Local analyses compared mean local efficiency of predefined frontal-executive and language (i.e., perisylvian) subnetworks. Exploratory correlations examined associations between network organization and neuropsychological performance. RESULTS: A total of 29 bilingual and 88 monolingual individuals with TLE matched on several demographic and clinical variables and 81 age-matched healthy controls were included. Globally, a significant interaction between language status and side of seizure onset revealed higher network organization in bilinguals compared with monolinguals but only in left TLE (LTLE). Locally, bilinguals with LTLE showed higher efficiency in frontal-executive but not in perisylvian networks compared with LTLE monolinguals. Improved whole-brain network organization was associated with better executive function performance in bilingual but not monolingual LTLE. DISCUSSION: Higher white matter network organization in bilingual individuals with LTLE suggests a neuromodulatory effect of bilingualism on whole-brain connectivity in epilepsy, providing evidence for neural reserve. This may reflect attenuation of or compensation for epilepsy-related dysfunction of the left hemisphere, potentially driven by increased efficiency of frontal-executive networks that mediate dual-language control. This highlights a potential role of bilingualism as a protective factor in epilepsy, motivating further research across neurologic disorders to define mechanisms and develop interventions.


Connectome , Epilepsy, Temporal Lobe , Multilingualism , Humans , Magnetic Resonance Imaging/methods , Temporal Lobe
7.
bioRxiv ; 2023 Mar 14.
Article En | MEDLINE | ID: mdl-36711617

The authors have withdrawn their manuscript owing to a substantial change in data analysis and findings/conclusions. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.

8.
Neuroimage Clin ; 35: 103091, 2022.
Article En | MEDLINE | ID: mdl-35753236

Binge drinking refers to a pattern of alcohol intake that raises blood alcohol concentration to or above legal intoxication levels. It is common among young adults and is associated with health risks that scale up with alcohol intake. Acute intoxication depresses neural activity via complex signaling mechanisms by enhancing inhibition mediated by gamma-amino butyric acid (GABA), and by decreasing excitatory glutamatergic effects. Evidence primarily rooted in animal research indicates that the brain compensates for the acute depressant effects under the conditions of habitual heavy use. These neuroadaptive changes are reflected in neural hyperexcitability via downregulated inhibitory signaling, which becomes apparent as withdrawal symptoms. However, human evidence on the compensatory reduction in GABA signaling is scant. The neurochemical aspect of this mechanistic model was evaluated in the present study with proton magnetic resonance spectroscopy (1H-MRS) which is sensitive to GABA plus macromolecule signal (GABA + ). Furthermore, we examined sex differences in GABA + levels as a function of a recent history of binge drinking, given interactions between endogenous neurosteroids, GABA signaling, and alcohol. The study recruited young adult women and men (22.2 ± 2.8 years of age) who were classified as binge drinkers (BDs, N = 52) if they reported ≥ 5 binge episodes in the previous six months. Light drinkers (LDs, N = 49) reported drinking regularly, but not exceeding ≤ 2 binge episodes in the past six months. GABA-edited 1H-MR spectra were acquired from the occipital cortex at 3 T with the MEGA-PRESS sequence. GABA + signal was analyzed relative to water and total creatine (Cr) levels as a function of binge drinking history and sex. Controlling for within-voxel tissue composition, both GABA + indices showed decreased GABA + levels in BDs relative to LDs. The reduced GABA + concentration was associated with occasional high-intensity drinking in the BD group. This evidence is consistent with compensatory GABA downregulation that accompanies alcohol misuse, tipping the excitation/inhibition balance towards hyperexcitability. Analysis of the time course of GABA + neuroplasticity indicated that GABA + was lowest when measured one day after the last drinking occasion in BDs. While the BD vs LD differences were primarily driven by LD women, there was no interaction between Sex and a history of binge drinking. GABA + was higher in LD women compared to LD men. Aligned with the allostasis model, the mechanistic compensatory GABA downregulation observed in young emerging adults engaging in occasional binge drinking complements direct neural measures of hyperexcitability in BDs. Notably, these results suggest that neuroadaptation to alcohol is detectable at the levels of consumption that are within a normative range, and may contribute to adverse health outcomes.


Binge Drinking , Alcohol Drinking , Blood Alcohol Content , Brain , Child, Preschool , Ethanol , Female , Humans , Male , Young Adult , gamma-Aminobutyric Acid
9.
Neuroimage Clin ; 32: 102879, 2021.
Article En | MEDLINE | ID: mdl-34768146

Binge drinking refers to the pattern of alcohol consumption that brings blood alcohol levels to or above legal intoxication levels. Commonly practiced by young adults, it is associated with neurofunctional alterations, raising health-related concerns. Executive deficits may contribute to the inability to refrain from excessive alcohol intake. As a facet of cognitive control, error processing allows for flexible modification of behavior to optimize future outcomes. It is highly relevant to addiction research, as a failure to inhibit excessive drinking results in relapses, which is a hallmark of alcohol use disorder. However, research on local and system-level neural underpinnings of inhibition failures as a function of binge drinking is limited. To address these gaps, functional magnetic resonance imaging (fMRI) was used to examine local changes and interregional functional connectivity during response inhibition errors on a Go/NoGo task. Young adult binge drinkers (BDs) performed equally well as light drinkers (LDs), a group of demographically matched individuals who drink regularly but in low-risk patterns. In contrast, BDs exhibited greater fMRI activity to inhibition errors contrasted with correct NoGo trials in the rostral anterior (rACC) and posterior cingulate cortices (PCC), as well as right middle frontal gyrus (R-MFG). Furthermore, BDs showed increased connectivity between the rACC and right lateral prefrontal cortex, in addition to greater connectivity between the R-MFG and the left ventrolateral and superior frontal cortices. Imaging indices were positively correlated only with alcohol-related measures, but not with those related to moods, disposition, or cognitive capacity. Taken together, greater error-related activity and expanded functional connectivity among prefrontal regions may serve a compensatory role to maintain efficiency of inhibitory control. Aligned with prominent models of addiction, these findings accentuate the importance of top-down control in maintaining low-risk drinking levels. They provide insight into potentially early signs of deteriorating cognitive control functions in BDs and may help guide intervention strategies aimed at preventing excessive drinking habits.


Binge Drinking , Alcohol Drinking , Ethanol , Humans , Inhibition, Psychological , Magnetic Resonance Imaging , Young Adult
10.
Biol Psychol ; 163: 108145, 2021 07.
Article En | MEDLINE | ID: mdl-34252483

The late positive potential (LPP) is an event related potential (ERP) that has been used to study the processing of emotional stimuli and has been proposed as a biomarker for depression. However, to relate the LPP to trait-like individual differences it is important to first determine its psychometric properties. The current study assessed the reliability and internal consistency of the LPP in a large adult sample of women. We assessed the LPP following pleasant, unpleasant, and neutral images at baseline (n = 266) and approximately eight weeks later (n = 193). The LPP demonstrated good test-retest reliability and good-to-excellent internal consistency at both time points. The LPP response was not associated with concurrent depressive symptoms. These findings suggest the LPP is a relatively stable and reliable measure of emotional processing, but further research with larger samples and more elevated depression scores may be needed in order to clarify the associations between depression and LPP.


Electroencephalography , Evoked Potentials , Adult , Emotions , Female , Humans , Psychometrics , Reproducibility of Results
11.
Brain Imaging Behav ; 14(5): 1731-1746, 2020 Oct.
Article En | MEDLINE | ID: mdl-31073695

Binge drinking is characterized by bouts of high-intensity alcohol intake and is associated with an array of health-related harms. Even though the transition from occasional impulsive to addictive alcohol use is not well understood, neurobiological models of addiction suggest that repeated cycles of intoxication and withdrawal contribute to the development of addiction in part through dysregulation of neurofunctional networks. Research on the neural sequelae associated with binge drinking is scant but resting state functional connectivity (RSFC) studies of alcohol use disorders (AUD) indicate that the development and maintenance of long-term excessive drinking may be mediated by network-level disruptions. The present study examined RSFC in young adult binge (BD) and light (LD) drinkers with seeds representing the networks subserving reward (the nucleus accumbens and caudate nucleus), salience (anterior cingulate cortex, ACC), and executive control (inferior frontal cortex, IFC). BDs exhibited enhanced connectivity between the striatal reward areas and the orbitofrontal cortex and the ACC, which is consistent with AUD studies and may be indicative of alcohol-motivated appetitive behaviors. Conversely, BDs demonstrated lower connectivity between the IFC and hippocampus which was associated with higher craving. This may indicate impaired ability to suppress unwanted thoughts and a failure to employ memory of the harmful consequences of heavy drinking in prospective plans and intentions. The observed greater connectivity of the reward/salience network and the lower prefrontal-hippocampal connectivity were associated with hazardous drinking levels indicating that dysregulation of neurofunctional networks may underlie binge drinking patterns.


Alcoholism , Binge Drinking , Alcoholism/diagnostic imaging , Binge Drinking/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Prospective Studies , Reward , Young Adult
12.
Brain Sci ; 8(1)2018 Jan 04.
Article En | MEDLINE | ID: mdl-29300304

Heavy episodic drinking is prevalent among young adults and is a public issue of increasing importance. Its initiation and maintenance are associated with deficits in the capacity to inhibit automatic processing in favor of non-habitual responses. This study used functional magnetic resonance imaging (fMRI) to examine behavioral and brain activity indices of cognitive control during the Stroop task as a function of binge drinking. Heavy episodic drinkers (HED) reported consuming 5+/6+ drinks in two hours at least five times in the past six months and were compared to light drinkers (LED) who reported two or fewer binge episodes but were matched on demographics, intelligence and family history of alcoholism. Greater conflict-induced activity in the ventrolateral prefrontal cortex (VLPFC) and thalamus was observed in HED participants and it was positively correlated with alcohol intake and alcohol-related harmful consequences. HEDs maintained intact accuracy but at a cost of prolonged reaction times to high-conflict trials and increased ratings of task difficulty. Greater activation of the areas implicated in cognitive control is consistent with compensatory network expansion to meet higher cognitive demands. These results provide further insight into degradation of cognitive control in HEDs which may benefit development of detection and prevention strategies.

13.
Psychiatry Res ; 232(1): 115-22, 2015 Apr 30.
Article En | MEDLINE | ID: mdl-25797401

Individuals with body dysmorphic disorder (BDD) suffer from preoccupations with perceived defects in physical appearance, causing severe distress and disability. Although BDD affects 1-2% of the population, the neurobiology is not understood. Discrepant results in previous volumetric studies may be due to small sample sizes, and no study has investigated cortical thickness in BDD. The current study is the largest neuroimaging analysis of BDD. Participants included 49 medication-free, right-handed individuals with DSM-IV BDD and 44 healthy controls matched by age, sex, and education. Using high-resolution T1-weighted magnetic resonance imaging, we computed vertex-wise gray matter (GM) thickness on the cortical surface and GM volume using voxel-based morphometry. We also computed volumes in cortical and subcortical regions of interest. In addition to group comparisons, we investigated associations with symptom severity, insight, and anxiety within the BDD group. In BDD, greater anxiety was significantly associated with thinner GM in the left superior temporal cortex and greater GM volume in the right caudate nucleus. There were no significant differences in cortical thickness, GM volume, or volumes in regions of interest between BDD and control subjects. Subtle associations with clinical symptoms may characterize brain morphometric patterns in BDD, rather than large group differences in brain structure.


Body Dysmorphic Disorders/pathology , Brain/pathology , Gray Matter/pathology , Adolescent , Adult , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Neuroimaging , Organ Size/physiology , Young Adult
14.
Psychiatry Res ; 211(2): 132-40, 2013 Feb 28.
Article En | MEDLINE | ID: mdl-23375265

Body dysmorphic disorder (BDD) is characterized by an often-delusional preoccupation with misperceived defects of appearance, causing significant distress and disability. Although previous studies have found functional abnormalities in visual processing, frontostriatal, and limbic systems, no study to date has investigated the microstructure of white matter connecting these systems in BDD. Participants comprised 14 medication-free individuals with BDD and 16 healthy controls who were scanned using diffusion-weighted magnetic resonance imaging (MRI). We utilized probabilistic tractography to reconstruct tracts of interest, and tract-based spatial statistics to investigate whole brain white matter. To estimate white matter microstructure, we used fractional anisotropy (FA), mean diffusivity (MD), and linear and planar anisotropy (c(l) and c(p)). We correlated diffusion measures with clinical measures of symptom severity and poor insight/delusionality. Poor insight negatively correlated with FA and c(l) and positively correlated with MD in the inferior longitudinal fasciculus (ILF) and the forceps major (FM). FA and c(l) were lower in the ILF and the inferior fronto-occipital fasciculus and higher in the FM in the BDD group, but differences were nonsignificant. This is the first diffusion-weighted MR investigation of white matter in BDD. Results suggest a relationship between impairments in insight, a clinically important phenotype, and fiber disorganization in tracts connecting visual with emotion/memory processing systems.


Body Dysmorphic Disorders/pathology , Nerve Fibers, Myelinated/pathology , Neuroimaging , Adult , Anisotropy , Body Dysmorphic Disorders/diagnosis , Case-Control Studies , Comprehension , Female , Humans , Male , Neural Pathways/pathology , Severity of Illness Index
15.
Neuropsychopharmacology ; 38(6): 1130-9, 2013 May.
Article En | MEDLINE | ID: mdl-23322186

Body dysmorphic disorder (BDD) is characterized by preoccupation with misperceived defects of appearance, causing significant distress and disability. Previous studies suggest abnormalities in information processing characterized by greater local relative to global processing. The purpose of this study was to probe whole-brain and regional white matter network organization in BDD, and to relate this to specific metrics of symptomatology. We acquired diffusion-weighted 34-direction MR images from 14 unmedicated participants with DSM-IV BDD and 16 healthy controls, from which we conducted whole-brain deterministic diffusion tensor imaging tractography. We then constructed white matter structural connectivity matrices to derive whole-brain and regional graph theory metrics, which we compared between groups. Within the BDD group, we additionally correlated these metrics with scores on psychometric measures of BDD symptom severity as well as poor insight/delusionality. The BDD group showed higher whole-brain mean clustering coefficient than controls. Global efficiency negatively correlated with BDD symptom severity. The BDD group demonstrated greater edge betweenness centrality for connections between the anterior temporal lobe and the occipital cortex, and between bilateral occipital poles. This represents the first brain network analysis in BDD. Results suggest disturbances in whole brain structural topological organization in BDD, in addition to correlations between clinical symptoms and network organization. There is also evidence of abnormal connectivity between regions involved in lower-order visual processing and higher-order visual and emotional processing, as well as interhemispheric visual information transfer. These findings may relate to disturbances in information processing found in previous studies.


Body Dysmorphic Disorders/diagnosis , Body Dysmorphic Disorders/metabolism , Brain/metabolism , Brain/pathology , Nerve Net/metabolism , Nerve Net/pathology , Adult , Body Dysmorphic Disorders/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Male , Middle Aged , Young Adult
16.
Z Klin Psychol Psychother (Gott) ; 42(3): 184-191, 2013.
Article En | MEDLINE | ID: mdl-25419211

Body Dysmorphic Disorder (BDD) affects approximately 2% of the population and involves misperceived defects of appearance along with obsessive preoccupation and compulsive behaviors. There is evidence of neurobiological abnormalities associated with symptoms in BDD, although research to date is still limited. This review covers the latest neuropsychological, genetic, neurochemical, psychophysical, and neuroimaging studies and synthesizes these findings into an updated (yet still preliminary) neurobiological model of the pathophysiology of BDD. We propose a model in which visual perceptual abnormalities, along with frontostriatal and limbic system dysfunction, may combine to contribute to the symptoms of impaired insight and obsessive thoughts and compulsive behaviors expressed in BDD. Further research is necessary to gain a greater understanding of the etiological formation of BDD symptoms and their evolution over time.

17.
Biol Psychiatry ; 73(2): 183-93, 2013 Jan 15.
Article En | MEDLINE | ID: mdl-23122540

BACKGROUND: This represents the first graph theory-based brain network analysis study in bipolar disorder, a chronic and disabling psychiatric disorder characterized by severe mood swings. Many imaging studies have investigated white matter in bipolar disorder, with results suggesting abnormal white matter structural integrity, particularly in the fronto-limbic and callosal systems. However, many inconsistencies remain in the literature, and no study to date has conducted brain network analyses with a graph-theoretic approach. METHODS: We acquired 64-direction diffusion-weighted magnetic resonance imaging on 25 euthymic bipolar I disorder subjects and 24 gender- and age-equivalent healthy subjects. White matter integrity measures including fractional anisotropy and mean diffusivity were compared in the whole brain. Additionally, structural connectivity matrices based on whole-brain deterministic tractography were constructed, followed by the computation of both global and local brain network measures. We also designed novel metrics to further probe inter-hemispheric integration. RESULTS: Network analyses revealed that the bipolar brain networks exhibited significantly longer characteristic path length, lower clustering coefficient, and lower global efficiency relative to those of control subjects. Further analyses revealed impaired inter-hemispheric but relatively preserved intra-hemispheric integration. These findings were supported by whole-brain white matter analyses that revealed significantly lower integrity in the corpus callosum in bipolar subjects. There were also abnormalities in nodal network measures in structures within the limbic system, especially the left hippocampus, the left lateral orbitofrontal cortex, and the bilateral isthmus cingulate. CONCLUSIONS: These results suggest abnormalities in structural network organization in bipolar disorder, particularly in inter-hemispheric integration and within the limbic system.


Bipolar Disorder/pathology , Brain/pathology , Corpus Callosum/pathology , Nerve Fibers, Myelinated/pathology , Neural Networks, Computer , Neuroimaging/methods , Neuroimaging/psychology , Adult , Anisotropy , Case-Control Studies , Diffusion Tensor Imaging/methods , Diffusion Tensor Imaging/psychology , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Neural Pathways/pathology
18.
PLoS One ; 7(8): e43061, 2012.
Article En | MEDLINE | ID: mdl-22900088

OBJECTIVES: Multiple sclerosis (MS) in African-Americans (AAs) is characterized by more rapid disease progression and poorer response to treatment than in Caucasian-Americans (CAs). MRI provides useful and non-invasive tools to investigate the pathological substrate of clinical progression. The aim of our study was to compare MRI measures of brain damage between AAs and CAs with MS. METHODS: Retrospective analysis of 97 AAs and 97 CAs with MS matched for age, gender, disease duration and age at MRI examination. RESULTS: AA patients had significantly greater T2- (p = 0.001) and T1-weighted (p = 0.0003) lesion volumes compared to CA patients. In contrast, measurements of global and regional brain volume did not significantly differ between the two ethnic groups (p>0.1). CONCLUSIONS: By studying a quite large sample of well demographically and clinically matched CA and AA patients with a homogeneous MRI protocol we showed that higher lesion accumulation, rather than pronounced brain volume decrease might explain the early progress to ambulatory assistance of AAs with MS.


Black or African American , Disabled Persons , Magnetic Resonance Imaging , Multiple Sclerosis/diagnosis , Adult , Brain/pathology , Disability Evaluation , Disease Progression , Female , Humans , Male , Organ Size , Retrospective Studies , White People , Young Adult
19.
Med Image Comput Comput Assist Interv ; 15(Pt 2): 228-36, 2012.
Article En | MEDLINE | ID: mdl-23286053

In this study, we propose a framework to map functional MRI (fMRI) activation signals using DTI-tractography. This framework, which we term functional by structural hierarchical (FSH) mapping, models the regional origin of fMRI brain activation to construct "N-step reachable structural maps". Linear combinations of these N-step reachable maps are then used to predict the observed fMRI signals. Additionally, we constructed a utilization matrix, which numerically estimates whether the inclusion of a specific structural connection better predicts fMRI, using simulated annealing. We applied this framework to a visual fMRI task in a sample of body dysmorphic disorder (BDD) subjects and comparable healthy controls. Group differences were inferred by comparing the observed utilization differences against 10,000 permutations under the null hypothesis. Results revealed that BDD subjects under-utilized several key local connections in the visual system, which may help explain previously reported fMRI findings and further elucidate the underlying pathophysiology of BDD.


Body Dysmorphic Disorders/physiopathology , Connectome/methods , Diffusion Tensor Imaging/methods , Evoked Potentials, Visual , Nerve Net/physiopathology , Visual Cortex/physiopathology , Visual Perception , Adult , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
20.
Hum Brain Mapp ; 28(7): 645-53, 2007 Jul.
Article En | MEDLINE | ID: mdl-17094120

Previous findings have shown that the human somatosensory cortical systems that are activated by passive nonpainful electrical stimulation include the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), and bilateral insula. The present study tested the hypothesis that these areas have different sensitivities to stimulation frequency in the condition of passive stimulation. Functional MRI (fMRI) was recorded in 24 normal volunteers during nonpainful electrical median nerve stimulations at 0.5, 1, 2, and 4 Hz repetition rates in separate recording blocks in pseudorandom order. Results of the blood oxygen level-dependent (BOLD) effect showed that the contralateral SI, the bilateral SII, and the bilateral insula were active during these stimulations. As a major finding, only the contralateral SI increased its activation with the increase of the stimulus frequency at the mentioned range. The fact that nonpainful median-nerve electrical stimuli at 4 Hz induces a larger BOLD response is of interest both for basic research and clinical applications in subjects unable to perform cognitive tasks in the fMRI scanner.


Evoked Potentials, Somatosensory/physiology , Magnetic Resonance Imaging , Median Nerve/physiology , Somatosensory Cortex/blood supply , Somatosensory Cortex/physiology , Adult , Analysis of Variance , Brain Mapping , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Oxygen/blood , Reaction Time/radiation effects
...